Information Systems Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: EFC102
Ders İsmi: Programming II
Ders Yarıyılı: Spring
Ders Kredileri:
Theoretical Practical Laboratory ECTS
3 2 0 7
Language of instruction: Turkish
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Required
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: Face to face
Course Coordinator : Öğr.Gör. REŞAT BUĞRA ERKARTAL
Course Lecturer(s):




Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: The objective of this course is to introduce the fundamental concepts of object-oriented programming using C++ programming language.
Course Content: Functions, constructors, Pointers, static variables, constants and methods, visibility modifiers, passing objects and arrays to methods, immutability, variable scope, class abstraction and packaging, superclass and subclass concepts, inheritance, polysemy, chewing, multiloading

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
1) Ability to evaluate algorithms; choosing one of the possible algorithm strategies; knowledge of performing/designing algorithms using the chosen algorithmic strategies to solve problems and to give reasons why a particular algorithm was chosen.
2) Ability to write C++ programs using advanced programming constructs: basic computing, simple I/O, standard conditional and iterative constructs, and subroutines and functions.
3) Ability to design, write, test, and debug functions, recursive functions, subroutines, and plain event-driven programs.
4) Ability to design algorithms within lean programming contexts.
5) Knowledge of general concepts of object-oriented programming.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Introduction
2) Input / Output and Operators
3) Classes and Objects
4) Control Structures and Loops
5) Functions and Recursive Functions
6) Pointers
7) Objects
8) Midterm
9) Introduction to classes and objects
10) Inheritance 1
11) Inheritance 2
12) Polymorphism 1
13) Polymorphism 2
14) File Processing
15) Final exam

Sources

Course Notes / Textbooks:
References: C++ How to Program, 10th Edition - Pearson

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları

1

2

3

4

5

Program Outcomes
1) Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields
2) Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems.
3) Ability to identify, formulate and solve complex engineering problems.
4) Ability to select and apply appropriate analysis and modeling methods to complex engineering problems.
5) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements.
6) Ability to apply modern design methods to design a complex system, process, device or product.
7) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice.
8) Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications.
9) Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics.
10) Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
11) Ability to work effectively in disciplinary teams.
12) Ability to work effectively in multidisciplinary teams.
13) Ability to work individually.
14) Ability to communicate effectively both orally and in writing.
15) Knowledge of at least one foreign language.
16) Effective report writing and comprehension of written reports, ability to prepare design and production reports.
17) Ability to make effective presentations, give and receive clear and understandable instructions.
18) Awareness of the necessity of lifelong learning.
19) Ability to access information, to follow developments in science and technology and to continuously renew oneself.
20) Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices.
21) Knowledge of business practices such as project management, risk management and change management.
22) Awareness about entrepreneurship and innovation.
23) Knowledge about sustainable development.
24) Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering.
25) Awareness of the legal implications of engineering solutions.

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields
2) Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems.
3) Ability to identify, formulate and solve complex engineering problems. 4
4) Ability to select and apply appropriate analysis and modeling methods to complex engineering problems. 5
5) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements. 4
6) Ability to apply modern design methods to design a complex system, process, device or product. 4
7) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice.
8) Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications.
9) Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics. 3
10) Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. 3
11) Ability to work effectively in disciplinary teams.
12) Ability to work effectively in multidisciplinary teams.
13) Ability to work individually.
14) Ability to communicate effectively both orally and in writing.
15) Knowledge of at least one foreign language.
16) Effective report writing and comprehension of written reports, ability to prepare design and production reports.
17) Ability to make effective presentations, give and receive clear and understandable instructions.
18) Awareness of the necessity of lifelong learning.
19) Ability to access information, to follow developments in science and technology and to continuously renew oneself.
20) Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices.
21) Knowledge of business practices such as project management, risk management and change management.
22) Awareness about entrepreneurship and innovation.
23) Knowledge about sustainable development.
24) Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering.
25) Awareness of the legal implications of engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Midterms 1 % 50
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100