Information Systems Engineering
Bachelor TR-NQF-HE: Level 6 QF-EHEA: First Cycle EQF-LLL: Level 6

Ders Genel Tanıtım Bilgileri

Course Code: FET307
Ders İsmi: Computer Networks
Ders Yarıyılı: Spring
Ders Kredileri:
Theoretical Practical Laboratory ECTS
2 1 0 5
Language of instruction: Turkish
Ders Koşulu:
Ders İş Deneyimini Gerektiriyor mu?: No
Type of course: Bölüm Seçmeli
Course Level:
Bachelor TR-NQF-HE:6. Master`s Degree QF-EHEA:First Cycle EQF-LLL:6. Master`s Degree
Mode of Delivery: E-Learning
Course Coordinator : Assoc. Prof. Dr. HAKAN AYDIN
Course Lecturer(s):






Course Assistants:

Dersin Amaç ve İçeriği

Course Objectives: The aim of this course is to teach the fundamental concepts, architectures, and communication protocols of computer networks, enabling students to analyze and implement network systems.
Course Content: This course covers the structure of computer networks, layered architecture, OSI and TCP/IP models, data transmission, routing, switching, protocols, IP addressing, wired and wireless network technologies, and network security topics.

Learning Outcomes

The students who have succeeded in this course;
Learning Outcomes
1 - Knowledge
Theoretical - Conceptual
2 - Skills
Cognitive - Practical
1) Explains the basic concepts, architecture, and layered structures of computer networks.
2) Analyzes the functions of each layer by comparing the OSI and TCP/IP models.
3) Applies IP addressing, routing, and switching techniques.
4) Identifies wired and wireless network technologies and gains knowledge about network security and protocols.
3 - Competences
Communication and Social Competence
Learning Competence
Field Specific Competence
Competence to Work Independently and Take Responsibility

Ders Akış Planı

Week Subject Related Preparation
1) Basic Concepts
2) Network Devices I
3) Network Devices II
4) Cabling
5) OSI Reference Model
6) TCP/IP Model
7) Network Monitoring and Control Commands
8) MIDTERM EXAM
9) IP Addressing
10) Network Topologies
11) Wireless Networks I
12) Wireless Networks II
13) Computer Network Terminology
14) Network Security
15) FINAL EXAM

Sources

Course Notes / Textbooks: -
References: Tanenbaum, A. S., & Wetherall, D. J. (2011). Computer networks (5th ed.). Pearson.

Ders - Program Öğrenme Kazanım İlişkisi

Ders Öğrenme Kazanımları

1

2

3

4

Program Outcomes
1) Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields
2) Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems.
3) Ability to identify, formulate and solve complex engineering problems.
4) Ability to select and apply appropriate analysis and modeling methods to complex engineering problems.
5) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements.
6) Ability to apply modern design methods to design a complex system, process, device or product.
7) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice.
8) Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications.
9) Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics.
10) Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
11) Ability to work effectively in disciplinary teams.
12) Ability to work effectively in multidisciplinary teams.
13) Ability to work individually.
14) Ability to communicate effectively both orally and in writing.
15) Knowledge of at least one foreign language.
16) Effective report writing and comprehension of written reports, ability to prepare design and production reports.
17) Ability to make effective presentations, give and receive clear and understandable instructions.
18) Awareness of the necessity of lifelong learning.
19) Ability to access information, to follow developments in science and technology and to continuously renew oneself.
20) Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices.
21) Knowledge of business practices such as project management, risk management and change management.
22) Awareness about entrepreneurship and innovation.
23) Knowledge about sustainable development.
24) Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering.
25) Awareness of the legal implications of engineering solutions.

Ders - Öğrenme Kazanımı İlişkisi

No Effect 1 Lowest 2 Low 3 Average 4 High 5 Highest
           
Program Outcomes Level of Contribution
1) Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields
2) Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems. 4
3) Ability to identify, formulate and solve complex engineering problems.
4) Ability to select and apply appropriate analysis and modeling methods to complex engineering problems.
5) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements. 4
6) Ability to apply modern design methods to design a complex system, process, device or product. 5
7) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice. 4
8) Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications. 5
9) Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics.
10) Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics.
11) Ability to work effectively in disciplinary teams. 3
12) Ability to work effectively in multidisciplinary teams. 3
13) Ability to work individually.
14) Ability to communicate effectively both orally and in writing.
15) Knowledge of at least one foreign language.
16) Effective report writing and comprehension of written reports, ability to prepare design and production reports.
17) Ability to make effective presentations, give and receive clear and understandable instructions.
18) Awareness of the necessity of lifelong learning.
19) Ability to access information, to follow developments in science and technology and to continuously renew oneself.
20) Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices.
21) Knowledge of business practices such as project management, risk management and change management.
22) Awareness about entrepreneurship and innovation.
23) Knowledge about sustainable development.
24) Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering.
25) Awareness of the legal implications of engineering solutions.

Assessment & Grading

Semester Requirements Number of Activities Level of Contribution
Homework Assignments 2 % 20
Midterms 1 % 30
Final 1 % 50
total % 100
PERCENTAGE OF SEMESTER WORK % 50
PERCENTAGE OF FINAL WORK % 50
total % 100