Information Systems Engineering | |||||
Bachelor | TR-NQF-HE: Level 6 | QF-EHEA: First Cycle | EQF-LLL: Level 6 |
Course Code: | FET204 | ||||||||
Ders İsmi: | Software Requirements Analysis | ||||||||
Ders Yarıyılı: |
Spring |
||||||||
Ders Kredileri: |
|
||||||||
Language of instruction: | Turkish | ||||||||
Ders Koşulu: | |||||||||
Ders İş Deneyimini Gerektiriyor mu?: | No | ||||||||
Type of course: | Bölüm Seçmeli | ||||||||
Course Level: |
|
||||||||
Mode of Delivery: | E-Learning | ||||||||
Course Coordinator : | Assoc. Prof. Dr. HAKAN AYDIN | ||||||||
Course Lecturer(s): |
|
||||||||
Course Assistants: |
Course Objectives: | The main purpose of the course is to teach the basic concepts and methods of Requirements Analysis, which is one of the important areas of Software Engineering. The basic topics such as requirements elicitation, requirements validation, requirements documentation, requirements management in agile processes, scope measurement and prototyping will be studied. Both theoretical and practical aspects of the topics will be covered with techniques used in the industry. |
Course Content: | This course covers the basic topics and concepts of requirements analysis and requirements engineering, requirements elicitation, scope size and cost estimation, documentation, prototyping, how requirements analysis is being transformed in agile processes, the role of the business analyst in the team, teamwork. |
The students who have succeeded in this course;
|
Week | Subject | Related Preparation |
1) | Course Introduction | |
2) | Introduction to Software Requirements Analysis and Requirements Engineering | |
3) | Requirements Engineer, Business Analyst, Technical Product Manager, and other related Roles | |
4) | SWOT Analysis as an Analyst and homework 1 | |
5) | Identifying Business Needs and Discovering the Voice of the Customer & Personal Project | |
6) | Requirements Elicitation and Understanding | |
7) | Project 1 Lecture, Sample Projects and Review of Draft Projects | |
8) | Homework Submission (Midterm Exam) | |
9) | Business Rules, Documentation of Requirements, Prioritization and Phasing | |
10) | Prototypes and Group Project | |
11) | Requirement Scope Measurement, COSMIC Function Point Method | |
12) | Modeling Requirements and Data Requirements | |
13) | Requirements Analysis for Specific Projects: Maintenance, New Product, Renovation, Package Product, Requirements Management | |
14) | Project progress Reports and Q&A | |
15) | Project Presentations and Submission of Reports (Final Exam) |
Course Notes / Textbooks: | Software Requirements, Third Edition, Karl E. Wiegers, Microsoft Press |
References: | Ders esnasında paylaşılan Sunum, makale ve video, vb. içerikler. Other learning materials such as presentations, articles, video, etc. contents. |
Ders Öğrenme Kazanımları | 1 |
2 |
3 |
4 |
6 |
5 |
7 |
|||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Program Outcomes | ||||||||||||||||||||||||
1) Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields | ||||||||||||||||||||||||
2) Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems. | ||||||||||||||||||||||||
3) Ability to identify, formulate and solve complex engineering problems. | ||||||||||||||||||||||||
4) Ability to select and apply appropriate analysis and modeling methods to complex engineering problems. | ||||||||||||||||||||||||
5) The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements. | ||||||||||||||||||||||||
6) Ability to apply modern design methods to design a complex system, process, device or product. | ||||||||||||||||||||||||
7) Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice. | ||||||||||||||||||||||||
8) Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications. | ||||||||||||||||||||||||
9) Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics. | ||||||||||||||||||||||||
10) Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | ||||||||||||||||||||||||
11) Ability to work effectively in disciplinary teams. | ||||||||||||||||||||||||
12) Ability to work effectively in multidisciplinary teams. | ||||||||||||||||||||||||
13) Ability to work individually. | ||||||||||||||||||||||||
14) Ability to communicate effectively both orally and in writing. | ||||||||||||||||||||||||
15) Knowledge of at least one foreign language. | ||||||||||||||||||||||||
16) Effective report writing and comprehension of written reports, ability to prepare design and production reports. | ||||||||||||||||||||||||
17) Ability to make effective presentations, give and receive clear and understandable instructions. | ||||||||||||||||||||||||
18) Awareness of the necessity of lifelong learning. | ||||||||||||||||||||||||
19) Ability to access information, to follow developments in science and technology and to continuously renew oneself. | ||||||||||||||||||||||||
20) Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices. | ||||||||||||||||||||||||
21) Knowledge of business practices such as project management, risk management and change management. | ||||||||||||||||||||||||
22) Awareness about entrepreneurship and innovation. | ||||||||||||||||||||||||
23) Knowledge about sustainable development. | ||||||||||||||||||||||||
24) Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering. | ||||||||||||||||||||||||
25) Awareness of the legal implications of engineering solutions. |
No Effect | 1 Lowest | 2 Low | 3 Average | 4 High | 5 Highest |
Program Outcomes | Level of Contribution | |
1) | Adequate knowledge in the fields of mathematics and science; ability to use theoretical and practical knowledge in these fields | |
2) | Adequate knowledge in subjects specific to the relevant engineering discipline; ability to use theoretical and applied knowledge in these areas to solve complex engineering problems. | 4 |
3) | Ability to identify, formulate and solve complex engineering problems. | |
4) | Ability to select and apply appropriate analysis and modeling methods to complex engineering problems. | |
5) | The ability to design a complex system, process, device or product under realistic constraints and conditions to meet specific requirements. | 4 |
6) | Ability to apply modern design methods to design a complex system, process, device or product. | 5 |
7) | Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering practice. | 4 |
8) | Ability to use information technologies effectively to analyze and solve complex problems encountered in engineering applications. | 5 |
9) | Ability to design and conduct experiments to investigate complex engineering problems or discipline-specific research topics. | |
10) | Ability to collect data, analyze and interpret results for the investigation of complex engineering problems or discipline-specific research topics. | |
11) | Ability to work effectively in disciplinary teams. | 3 |
12) | Ability to work effectively in multidisciplinary teams. | 3 |
13) | Ability to work individually. | |
14) | Ability to communicate effectively both orally and in writing. | |
15) | Knowledge of at least one foreign language. | |
16) | Effective report writing and comprehension of written reports, ability to prepare design and production reports. | |
17) | Ability to make effective presentations, give and receive clear and understandable instructions. | |
18) | Awareness of the necessity of lifelong learning. | |
19) | Ability to access information, to follow developments in science and technology and to continuously renew oneself. | |
20) | Knowledge about acting in accordance with ethical principles, professional and ethical responsibility and standards used in engineering practices. | |
21) | Knowledge of business practices such as project management, risk management and change management. | |
22) | Awareness about entrepreneurship and innovation. | |
23) | Knowledge about sustainable development. | |
24) | Knowledge about the effects of engineering applications on health, environment and safety in universal and social dimensions and the problems of the era reflected in the field of engineering. | |
25) | Awareness of the legal implications of engineering solutions. |
Semester Requirements | Number of Activities | Level of Contribution |
Homework Assignments | 2 | % 20 |
Midterms | 1 | % 30 |
Final | 1 | % 50 |
total | % 100 | |
PERCENTAGE OF SEMESTER WORK | % 50 | |
PERCENTAGE OF FINAL WORK | % 50 | |
total | % 100 |